Visual and Inertial Odometry for a Disaster Recovery Humanoid

نویسندگان

  • Michael David George
  • Jean-Philippe Tardif
  • Alonzo Kelly
چکیده

Disaster recovery robots must operate in unstructured environments where wheeled or tracked motion may not be feasible or where it may be subject to extreme slip. Many industrial disaster scenarios also preclude reliance on GNSS or other external signals as robots are deployed indoors or underground. Two of the candidates for precise positioning in these scenarios are visual odometry and inertial navigation. This paper presents some practical experience in the design and analysis of a combined visual and inertial odometry system for the Carnegie Mellon University Highly Intelligent Mobile Platform (CHIMP); a humanoid robot competing in the DARPA Robotics Challenge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vision-Aided Absolute Trajectory Estimation Using an Unsupervised Deep Network with Online Error Correction

We present an unsupervised deep neural network approach to the fusion of RGB-D imagery with inertial measurements for absolute trajectory estimation. Our network, dubbed the Visual-Inertial-Odometry Learner (VIOLearner), learns to perform visual-inertial odometry (VIO) without inertial measurement unit (IMU) intrinsic parameters (corresponding to gyroscope and accelerometer bias or white noise)...

متن کامل

A review of visual inertial odometry from filtering and optimisation perspectives

A review of visual inertial odometry from filtering and optimisation perspectives Jianjun Gui, Dongbing Gu, Sen Wang & Huosheng Hu To cite this article: Jianjun Gui, Dongbing Gu, Sen Wang & Huosheng Hu (2015) A review of visual inertial odometry from filtering and optimisation perspectives, Advanced Robotics, 29:20, 1289-1301, DOI: 10.1080/01691864.2015.1057616 To link to this article: http://d...

متن کامل

Adaptive Monocular Visual–Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices

Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual-inertial SLAM method for real-time augmented reality applic...

متن کامل

PIVO: Probabilistic Inertial-Visual Odometry for Occlusion-Robust Navigation

This paper presents a novel method for visual-inertial odometry. The method is based on an information fusion framework employing low-cost IMU sensors and the monocular camera in a standard smartphone. We formulate a sequential inference scheme, where the IMU drives the dynamical model and the camera frames are used in coupling trailing sequences of augmented poses. The novelty in the model is ...

متن کامل

Fast Monocular Visual Compass for a Computationally Limited Robot

This paper introduces an extremely computationally inexpensive method for estimating monocular, feature-based, heading-only visual odometry a visual compass. The method is shown to reduce the odometric uncertainty of an uncalibrated humanoid robot by 73%, while remaining robust to the presence of independently moving objects. High efficiency is achieved by exploiting the planar motion assumptio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013